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Generalized Linear Model for Binary 
Data with Missing Values: 

 An EM Algorithm Approach 
Nazneen Sultana 

Abstract: A procedure is derived for estimating the parameter in case of missing data. The missing data mechanism is 
considered as missing at random (MAR) and non-ignorable. Here we use EM algorithm for logit link approach in generalized 
linear model. The logit link approach shows that it can effectively estimate the value of a categorical variable when we have 
information on the other categorical variables. In this method the variable with missing values is considered as dependent 
variable. In addition a real data set for low birth weight is presented to illustrate the method proposed. 

Index Terms: Binary data, EM algorithm, Generalized linear model, Logit link, Maximum likelihood estimation, Missing data, 
non-ignorable. 

——————————      —————————— 
 

1. INTRODUCTION                                                                     

URING the process of complete data, 
sometimes we may not get the full observed 

data. This results in partially incomplete data. An 
inappropriate conclusion may occur when the 
researchers ignore, truncate, censor or collapse 
those data as it might contain important 
information. When non-response is unrelated to 
the missing values of the variables, the non-
response is called ignorable (see Little (1992) and 
Little and Rubin (1987)). When non-response is 
related to values of missing variables, the non-
response is called non-ignorable. The literature 
for generalized linear model with incomplete 
observations, however, is sparse. Ibrahim et al 
(1990) discussed incomplete data in generalized 
linear models. Ibrahim and Lipsitz (1996) 
proposed a method for estimating parameters in 

binomial regression models when the response 
variable is missing and the missing data 
mechanism is non-ignorable. Ibrahim and Lipsitz 
(1996) proposed a conditional model for 
incomplete covariates in parametric regression 
models. Ibrahim, Lipsitz and Chen (1999) 
proposed a method for estimating parameters in 
generalized linear models with missing 
covariates and a non-ignorable missing data 
mechanism. 

In this paper, we have proposed a method for 
estimating parameters in generalized linear 
model with missing values. We used parameter 
estimation procedure for logit link function in 
generalized linear model. Here variable with 
missing values is considered as dependent 
variable. Here we considered the non-response as 
non-ignorable. We used EM algorithm both for 
categorical and continuous variable. The method 
proposed is computationally simple and easy. 

The rest of this paper is organized as follows. In 
section 2, we first briefly review the previous 
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methods of estimating parameters for missing 
data using EM algorithm. In section 3, we discuss 
the parameter estimation procedure for logit link 
function in generalized linear model. Then in 
section 4, we discuss the proposed method and in 
section 5, we demonstrate the methodology with 
example. We conclude the paper with a 
discussion section. 

2.  EM Algorithm for Missing Data 

In 1977 a broadly applicable algorithm for 
computing the maximum likelihood estimates 
from incomplete data is proposed by Dempster, 
Laird and Rubin. They proposed an algorithm 
which is named as EM algorithm because it 
involves expectation step (E-step) and 
maximization step (M-step) in each iteration.  

Little and Scheluchter (1985) discussed the 
maximum likelihood estimation procedure for 
mixed continuous and categorical data with 
missing values. The general location model of 
Olkin & Tate (1961) and extensions introduced by 
Krzanowski (1980, 1982) formed the basis for this 
method.  

Baker and Laird (1988) developed the process of 
regression analysis for categorical variables with 
outcome subject to non-ignorable non-response. 
They developed a log-linear model for 
categorical response subject to non-ignorable 
non-response. To illustrate model development, 
they considered 𝑋 as cross-classification of 
covariates indexed by 𝑥 = 1, … … , 𝑠,𝑌 as 
polychotomous outcome indexed by 𝑦 =
1, … … , 𝑞, and 𝑅 as a dichotomous response 
mechanism indexed by 𝑟 (𝑟 = 1 = 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒; 𝑟 =
2 = 𝑛𝑜 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒. Let 𝑝𝑦𝑟│𝑥  be the joint probability 

of outcome and response mechanism conditional 
on x. Let 𝑧𝑥𝑦1 be the observed counts for the 

completely classified data of the respondents, 
and let 𝑧𝑥+2 denote the observed counts for the 

incompletely classified data of the 
nonrespondents. The likelihood function 
corresponding to their model is given by 

𝐿 = ����𝑝𝑦1|𝑥�
𝑧𝑥𝑦1

𝑦𝑥

� ���𝑝+2|𝑥�
𝑧𝑥+2

𝑥

� 

Then they proceeded the E-step and M-step of 

EM algorithm. But this process takes a large 

number of iteration. 

Lipsitz and Ibrahim (1996) examined that when 
the missing covariates are categorical, a useful 
technique for obtaining parameter estimates is 
the EM algorithm by the method of weighs 
proposed in Ibrahim (1990). This method 
requires the estimation of many nuisance 
parameters for the distribution of the covariates. 
In this paper, the distribution of K-dimensional 
covariate vector 𝑥 = (𝑥1, … , 𝑥𝑘) can be written 
through a series of one-dimensional conditional 
distributions, as 
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where 𝛼𝑘 is a vector of indexing parameters for 
the 𝑘th conditional distribution, 𝛼 = (𝛼1, … ,𝛼𝑘), 
and the 𝛼𝑘’s are distinct. They used the EM 
algorithm by the method of weights where the 
weights are the posterior probability of the 
missing values. Unfortunately there are often too 
many probabilities to estimate in a saturated 
model for 𝑃(𝑥1, … ,𝑥𝑘|𝛼) when there are many 
covariates with missing values. In that situation, 
the model becomes complicated. 

Ibrahim, Lipsitz and Chen (1999) developed a 
method for missing covariates in Generalized 
Linear Model when the missing data mechanism 
is non-ignorable. They used a multinomial model 
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for the missing data indicators and proposed a 
joint distribution for them which can be written 
as a sequence of one-dimensional conditional 
distributions, with each one-dimensional 
conditional distribution consisting of a logistic 
regression. They allowed the covariates to be 
either categorical or continuous. Suppose that 
(𝑥1,𝑦1), … , (𝑥𝑛 ,𝑦𝑛) are independent observations, 
where each 𝑦𝑖  is the response variable and each 

𝑥𝑖 is a 𝑝 × 1 random vector of covariates. The 
missing data mechanism is defined as the 
distribution of the 𝑝 × 1 random vector 𝑟𝑖, whose 

𝑘th component 𝑟𝑖𝑘 equals 1 if 𝑥𝑖𝑘 is observed for 

subject 𝑖 and is 0 if 𝑥𝑖𝑘 is missing. Here 𝛽 =

�𝛽1, … ,𝛽𝑝�
′ is a 𝑝 × 1 vector of regression 

coefficients, 𝛼 and 𝜑 are considered as nuisance 
parameters.  In this paper for categorical 
covariates, 

𝑝(𝑦𝑖 ,𝑥𝑖 , 𝑟𝑖|𝛽,𝛼,𝜑) = 𝑝(𝑦𝑖|𝑥𝑖 ,𝛽)𝑝(𝑥𝑖|𝛼)𝑝(𝑟𝑖|𝑦𝑖 , 𝑥𝑖 ,𝜑) 

which leads to the complete data log-likelihood 

𝑙(𝛾) = �𝑙(𝛾, 𝑥𝑖 ,𝑦𝑖 , 𝑟𝑖)
𝑛

𝑖=1

 

= � log{𝑝(𝑦𝑖|𝑥𝑖 ,𝛽)} +
𝑛

𝑖=1

log{𝑝(𝑥𝑖|𝛼)} 

+ log{𝑝(𝑟𝑖|𝑦𝑖 , 𝑥𝑖 ,𝜑)} 

 

where 𝛾 = (𝛽,𝛼,𝜑) and 𝑙(𝛾, 𝑥𝑖 ,𝑦𝑖 , 𝑟𝑖) is the 
contribution to the complete data log-likelihood 
for the 𝑖th observation. 

 Then they used the EM algorithm by the method 
of weights where the E-step is, 

𝑄�𝛾�𝛾(𝑡)�

= � � 𝑤𝑖𝑗,(𝑡) log[𝑝{𝑦𝑖|𝑥𝑖(𝑗),𝛽}]
𝑥𝑚𝑖𝑠,(𝑗)

𝑛

𝑖=1

+� � 𝑤𝑖𝑗,(𝑡) log[𝑝{𝑥𝑖(𝑗)|𝛼}]
𝑥𝑚𝑖𝑠,(𝑗)

𝑛

𝑖=1

+� � 𝑤𝑖𝑗,(𝑡) log[𝑝{𝑟𝑖|𝑦𝑖 , 𝑥𝑖(𝑗),𝜑}]
𝑥𝑚𝑖𝑠,(𝑗)

𝑛

𝑖=1

 

= 𝑄(1)�𝛽�𝛾(𝑡)�+ 𝑄(2)�𝛼�𝛾(𝑡)�+ 𝑄(3)�𝜑�𝛾(𝑡)� 

The weights 𝑤𝑖𝑗,(𝑡) are the conditional 
probabilities corresponding to 
�𝑥𝑚𝑖𝑠,𝑖│𝑥𝑜𝑏𝑠,𝑖 , 𝑦𝑖 , 𝑟𝑖 , 𝛾� and are given by 

𝑤𝑖𝑗,(𝑡)

= 𝑝�𝑦𝑖│𝑥𝑚𝑖𝑠,𝑖(𝑗),𝑥𝑜𝑏𝑠,𝑖 , 𝛾(𝑡)�. 𝑝�𝑥𝑚𝑖𝑠 ,𝑖(𝑗),𝑥𝑜𝑏𝑠,𝑖│𝛾(𝑡)� 

. 𝑝�𝑟𝑖│𝑦𝑖 ,𝑥𝑚𝑖𝑠,𝑖(𝑗),𝑥𝑜𝑏𝑠,𝑖 ,𝛾(𝑡)�

÷ �
𝑝�𝑦𝑖│𝑥𝑖(𝑗),𝛾(𝑡)�.𝑝�𝑥𝑖(𝑗)│𝛾(𝑡)�

.𝑝�𝑟𝑖│𝑦𝑖 ,𝑥𝑖(𝑗),𝛾(𝑡)�𝑥𝑚𝑖𝑠,𝑖(𝑗)

 

and the M-step is, 

𝑄�𝛾�𝛾(𝑡)� = �𝑄𝑖�𝛾�𝛾(𝑡)�
𝑛

𝑖=1

= � � 𝑤𝑖𝑗,(𝑡)
𝜕𝑙{𝛾𝑖 ,𝑥𝑖(𝑗),𝑦𝑖 , 𝑟𝑖}

𝜕𝛾
𝑥𝑚𝑖𝑠,(𝑗)

𝑛

𝑖=1

 

But this procedure is so much complicated and 
time consuming. That is why, an easy and 
simpler method is proposed in this paper. 

3. Parameter Estimation: Logit Link 
Function in the Generalized Linear 
Model 

For any binomial variable, Y, the probability 
mass function can be expressed as (McCullagh, P. 
and J.A. Nelder. 1989) 

𝑓𝑌(𝑦;𝜃,𝜑) = �
𝑛
𝑦�𝜋

𝑦(1− 𝜋)𝑛−𝑦 
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= 𝑒𝑥𝑝 �𝑦𝑙𝑛 � 𝜋
1−𝜋

�+ 𝑛𝑙𝑛(1− 𝜋) + 𝑙𝑛 �
𝑛
𝑦�� 

    (3.1) 

Therefore, from (3.1), for the binomial 

distribution 

𝜃 = 𝑙𝑛 �
𝜋

1− 𝜋�
, 𝜋 =

𝑒𝜃

1 + 𝑒𝜃
,   

𝑏(𝜃) = −𝑛𝑙𝑛(1− 𝜋), 

𝑎(𝜑) = 1, 𝑐(𝑦,𝜑) = 𝑙𝑛 �
𝑛
𝑦�,   

𝐸(𝑦) =
𝑑𝑏(𝜃)
𝑑𝜃

=
𝑑𝑏(𝜃)
𝑑𝜋

.
𝑑𝜋
𝑑𝜃

 

where  

𝑑𝜋
𝑑𝜃

= 𝑒𝜃

1+𝑒𝜃
− � 𝑒𝜃

1+𝑒𝜃
�
2

= 𝜋(1− 𝜋)  (3.2) 

For the exponential family, the log likelihood 

function corresponding to a random sample of 

size n is 

𝑙(𝑦,𝛽) = ��
{𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)}

𝑎(𝜑) + 𝑐(𝑦𝑖 ,𝜑)�
𝑛

𝑖=1

 

Thus for the canonical link in the binomial case, 

we have 

𝜂𝑖 = 𝑔[𝐸(𝑦𝑖)] = 𝑔(𝜇𝑖) 

= 𝑙𝑛[𝜇𝑖/(1− 𝜇𝑖)] = 𝑥𝑖´𝛽 = 𝜃𝑖 

 and  𝜇𝑖 = 𝜋𝑖 where 𝑥𝑖´ is the i-th row of the X-

matrix. Therefore, 

𝛿𝑙
𝛿𝛽

=
𝛿𝑙
𝛿𝜃𝑖

.
𝛿𝜃𝑖
𝛿𝛽

 

=
1

𝑎(𝜑)��𝑦𝑖 −
𝑑𝑏(𝜃𝑖)
𝑑𝜃𝑖

�
𝑛

𝑖=1

𝑥𝑖 

=
1

𝑎(𝜑)�
[𝑦𝑖 − 𝜇𝑖]𝑥𝑖

𝑛

𝑖−1

 

Consequently, we can find the maximum 

likelihood estimates of the parameters by solving 

the system of equations 

1
𝑎(𝜑)

∑ [𝑦𝑖 − 𝜇𝑖]𝑥𝑖𝑛
𝑖−1 = 0   (3.3) 

For the binomial distribution 𝑎(𝜑) = 1, so  (3.3) 

becomes 

∑ [𝑦𝑖 − 𝜇𝑖]𝑥𝑖𝑛
𝑖−1 = 0   (3.4) 

Thus, the maximum likelihood estimate of β is 

�̂� = (𝑋´𝑉−1𝑋)−1𝑋´𝑉−1𝑧   (3.5) 

It is interesting to note similarity of (3.5) to the 

expression obtained in standard regression 

model. 

4.  EM Algorithm with Logit Link in 
GLM 

In this method first we have to check out in 

which variable the missing values arise. Then the 

variable with missing data is considered as 

dependent variable. For example, let we have 3 

variables 𝑥𝑖1, 𝑥𝑖2 and 𝑥𝑖3. If missing values are 

arise in 𝑥𝑖2 then we consider it as dependent 

variable and we have to calculate the conditional 

probabilities of 𝑥𝑖2 with respect to 𝑥𝑖1 and 𝑥𝑖3. 
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That is, we have to fine 𝑝(𝑥𝑖2 ∣ 𝑥𝑖1,𝑥𝑖3). After that 

we use the iteration procedure of EM algorithm.  

Suppose that (𝑥1,𝑦1), … … , (𝑥𝑛 ,𝑦𝑛) are 

independent observations. If there are missing 

values in 𝑦𝑖 then 𝑦𝑖 is considered as response 

variable and each 𝑥𝑖 is a 𝑝 × 1 random vector of 

covariates. The conditional distribution of 𝑦𝑖 

given 𝑥𝑖 is 

𝑝(𝑦𝑖 ∣ 𝑥𝑖 ,𝛽) = 𝜋𝑦𝑖(1− 𝜋)1−𝑦𝑖 

where                                                

𝜋 =
𝑒𝑥𝑝(𝑋𝛽)

1 + 𝑒𝑥𝑝(𝑋𝛽) 

The E-step is 

𝐸(𝑦 ∣ 𝑥) =  𝜋� = 𝑒𝑥𝑝(𝑋𝛽)
1+𝑒𝑥𝑝(𝑋𝛽)

   (4.1) 

Here 

𝑝(𝑦𝑖 = 1 ∣ 𝑥𝑖 ,𝛽) =
𝑒𝑥𝑝(𝑋𝛽)

1 + 𝑒𝑥𝑝(𝑋𝛽) 

and 

𝑝(𝑦𝑖 = 0 ∣ 𝑥𝑖 ,𝛽) =
1

1 + 𝑒𝑥𝑝(𝑋𝛽) 

From incomplete data, we calculate 𝐸(𝑦 ∣ 𝑥) = 𝜋� . 

If 𝜋� ≥ 0.5 then in missing values, we consider y = 

1 and if 𝜋� < 0.5 then  

y = 0. After that we get the complete data. Now 

the complete data likelihood function is 

𝑙(𝛽) = ��
𝑒𝑥𝑝(𝑋𝛽)

1 + 𝑒𝑥𝑝(𝑋𝛽)�
𝑦𝑖

. �
1

1 + 𝑒𝑥𝑝(𝑋𝛽)�
1−𝑦𝑖𝑛

𝑖=1

 

The log-likelihood function is 

𝑙𝑜𝑔𝑙(𝛽) = �[𝑦𝑖𝑋𝛽 − 𝑙𝑜𝑔(1 + exp (𝑋𝛽))]
𝑛

𝑖=1

 

The M-step involves the maximization of the log-

likelihood. Thus the M-step can be obtained as 

follows: 

𝛿𝑙𝑜𝑔𝑙(𝛽)
𝛿𝛽𝑗

= ��𝑦𝑖𝑥𝑗 −
𝑥𝑗𝑒𝑥𝑝(𝑋𝛽)

1 + 𝑒𝑥𝑝(𝑋𝛽)�
𝑛

𝑖=1

 

and 

𝛿2𝑙𝑜𝑔𝑙(𝛽)
𝛿𝛽𝑗𝛿𝛽𝑘

= −��
𝑥𝑗𝑥𝑘𝑒𝑥𝑝(𝑋𝛽)

�1 + 𝑒𝑥𝑝(𝑋𝛽)�
2�

𝑛

𝑖=1

 

So the score vector 

𝑈(𝛽) =
𝛿𝑙𝑜𝑔𝑙(𝛽)
𝛿𝛽𝑗

                                          (4.2) 

And the information matrix is 

𝐼(𝛽) = �−
𝛿2𝑙𝑜𝑔𝑙(𝛽)
𝛿𝛽𝑗𝛿𝛽𝑘

�                                 (4.3) 

Then we get the estimate of 𝛽 using Newton-

Raphson method: 

�̂�(𝑘+1) = �̂�(𝑘) + 𝐼��̂��
−1
𝑈��̂��                         (4.4) 

We have to continue this repeatedly until the 

convergence that is 

�𝛽(𝑡+1) − 𝛽(𝑡)� ≤ 𝜀 

 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013                                                               2136 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

5.  Example 

We consider the Low Birth Weight Data (Hosmer 

and Lemeshow). Consider two variables Low 

(low birth weight of baby) and Age (mother’s 

age). Here we consider missing at random 

method. In variable Low, 20, 74, 94, 22 and 93 

positions are missing. That is we have 5 missing 

values. So we consider Low as dependent 

variable and Age as independent variable. We 

considered age 22 as a cut-off point. Since we 

want to work with dichotomous data, we recode 

the age data into 0 and 1. Here  

𝑝(𝑦𝑖 = 1 ∣ 𝑥𝑖 ,𝛽) =
𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖)

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖)
 

where 𝑋 =  (1,  𝑥𝑖)  is the 1 × 2 vector of 

covariates for the ith observation, including an 

intercept and 𝛽 = (𝛽0,𝛽1)´. The initial values 

chosen for the regression coefficients are 

(𝛽0,𝛽1) = (−0.6,−0.07).  

Then using (4.1), we get 𝜋�. Using the condition of 

replacing missing values, we replace the 5 

missing values by 1. Then we get the complete 

data. In M-step we use (4.2), (4.3) and (4.4) and 

then we get the estimate. 

Again using this estimate we recalculate E-step 

and M-step. After the EM convergence we get the 

final estimate. 

 

Table 5.1: Parameter estimation for categorical 

age 

It is evident from Table 5.1 that there is no 

statistically significant association between age 

and birth weight. However we observed that all 

randomly chosen values for subject 20, 74, 94, 22 

and 93 are matched with the estimated values. 

The criteria of matching are discussed in the 

previous section 3. 

Again we considered age as continuous variable 

and did the whole procedure without recoding 

the age. Here we considered low as binary data 

and age as continuous data. Using these 

variables, we get the result for logit link 

approach. 

Table 5.2: Parameter estimation for continuous 

age 
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From Table 5.2 we observed that we get the same 

result after considering age as continuous 

variable. That is, there is no statistically 

significant relationship between age and low 

birth weight. However we observed that all 

randomly chosen values are also matched with 

the estimated values. The percentage of matching 

may improve with the specification of the 

underlying model. 

6.  Discussion 

We have proposed a method of estimation based 

on GLM. We have proposed the method for non-

ignorable non-response. For the examples 

considered in Section 5, we observed that the 

missing values are fully matched with the 

estimated values and the estimates are matched 

with the estimates for complete data i.e. original 

data. One drawback of the EM algorithm is its 

slow convergence rate but the whole procedure is 

simple and easy. This method is easy to handle 

and it gives efficient result. So we can use it for 

real-life data. 
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